
TITAN MOBILE APPLICATION FRAMEWORK

OVERVIEW

The SAP Mobile infrastructure consists of three
major components:

• SAP back-end system(s);
• SAP Unwired (Mobile) Platform server;
• Client devices

• iPhone
• iPad
• Android device
• Blackberry
• Windows Mobile device

There are, in fact, several other components involved; however, the above is a simplified description
that shows only the components involved within the Titan framework.

In a nutshell, data objects such as customers, vendors, materials, sales orders, delivery notes, invoices,
etc. are stored on the SAP back-end systems. These data objects are spread across several database
tables, and take up a lot of space.

Users of mobile devices will typically require access to view and/or modify only a small percentage of
any given SAP data object. In some cases, the mobile user may wish to see components of more than
one data object combined on a mobile device – for example, customer number, name and address from
the customer object together with document number and value for all orders for that customer from the
sales order object.

SAP uses an entity called a Mobile Business Object, or MBO, to provide the mobile device a view of
back-end data objects. The challenge to mobile developers is to map the appropriate components of
the back-end system objects to the MBO, both in the initial development of a mobile application and in
subsequent enhancement stages of the application as user requirements change.

TITAN MOBILE APPLICATION FRAMEWORK

The diagram above shows a simple
representation of this mapping process

Enterprise
System

Device
Representation

customer
Attributes (9)

fname : STRING(15)
fname : STRING(20)
address : STRING(35)
city : STRING(20)
state : STRING(2)
zip : STRING(10)
phone : STRING(12)
company_name : STRING(35)
+ id : INT

Operations (3)
update()
delete()
create()

Subset Personalize Mobilize

 This mapping process will typically be done via Remote Function Calls, or RFC’s, from the SAP
Unwired Platform (SUP) to the SAP back-end system as described below:

1. The SUP server makes a call to the
GET_CUSTOMER_ORDER RFC-enabled
function module.

2. The GET_CUSTOMER_ORDER function is
executed on the SAP ERP system.

3. The GET_CUSTOMER_ORDER function
reads the required data on the ERP system
and transfers it to the SUP server.

4. After the mobile device has modified
the order data, the SUP server makes a
call to the SAVE_CUSTOMER_ORDER
RFC-enabled function module, passing
the updated order data in the function
parameters.

5. The SAVE_CUSTOMER_ORDER function
is executed on the ERP system; the modified

 order data is saved in the ERP database
 tables.

SAP ERP Back-end
System SAP Unwired

Platform

RFC Function
GET_CUSTOMER_ORDER

RFC function
SAVE_CUSTOMER_ORDER

Order data
from ERP to

SUP

Order data
from SUP to

ERP

5. Called RFC
updates order data
in ERP system

4. Modified order
data is sent from
SUP via RFC call

3. Order data is

sent to SUP

2. Request is
sent to ERP via
RFC call 1. SUP makes

request for
customer data

 These steps are shown in the flow diagram
below.

PRODUCT DETAILS
The Titan Mobile Application Framework
simplifies the development of the function
modules that feed the MB0s on the SUP server.

A core set of extractor classes (for reading
back-end data), and persistence classes (for
writing back-end data) is provided to process
source data from each underlying table of a
business object within the ERP system (for
example, Material Data Object, consisting of
tables MARA, MARC, MARD, MAKT, etc.). Each
table component is processed by a dedicated
READ method in the extractor class. A set of
Extractor Configuration tables determine
(a) which data elements from the table that will
be extracted by the READ method and
(b) which target fields of the MBO that
the extracted data will be mapped to.

Similarly, the Persistence Configuration tables
drive the execution of the persistence class WRITE
methods to write the data returned in the MBO to
the ERP database tables.

A higher-level set of generation programs with
corresponding Generator Configuration tables is
provided to define the extractor and persistence
objects to be used for each function module. The
generation programs and matching Generator
Configuration tables are used to generate the
code for the function modules. As business
requirements change, modifications are made to
the Extractor and Persistence tables. After which
the generator programs are executed to generate
a new version of the function module(s).

Following common SAP practice, a set of user
exits is provided in the form of BAdI classes to
allow user-specific functionality to be added to
the function modules.

A default set of configuration data is provided
as a starting point. Customers may modify the

provided objects (or copies of them) to suit their
unique requirements. Specialized code can be
added as necessary in the user exit BAdI classes.

It is also possible to create customer-specific
objects using the supplied configuration as a
template. These customer-specific objects could
be created by customer technical staff members,
or as a consulting project by Titan.

Implementing the mapping process requires
a substantial amount of development. The
MBOs must be developed and deployed to
the SUP server, and the function modules that
map the MBO components to the back-end
system data objects must be written. Knowledge
about the data objects on the back-end
system is required to implement the function
modules in an efficient manner.

Over time, as the end-user business evolves,
changes will be required to the MBOs on the
SUP server, and also to the back-end function
modules. Development and maintenance of
these components are not a trivial exercise.

GLOBAL HEADQUARTERS

3411 Preston Rd., Ste. C13-PMB 205 / Frisco, Texas 75034 / Main: 972.377.3500 / Fax: 972.692.7436

